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Shear zones in granular materials: Optimization in a self-organized random potential

J. Torok," T. Unger,” J. Kertész,> and D. E. Wolf®
1Departmemf of Chemical Information Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
2Department of Theoretical Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary

3Department of Physics, University Duisburg-Essen, D-47048 Duisburg, Germany
(Received 15 March 2006; published 25 January 2007)

We introduce a model to describe the wide shear zones observed in modified Couette cell experiments with
granular material. The model is a generalization of the recently proposed approach based on a variational
principle. The instantaneous shear band is identified with the surface that minimizes the dissipation in a random
potential that is biased by the local velocity difference and pressure. The apparent shear zone is the ensemble
average of the instantaneous shear bands. The numerical simulation of this model matches excellently with

experiments and has measurable predictions.
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Strain localization or shear band formation in granular
materials has been studied for many years [1,2] due to its
importance in engineering and geoscience. Shear bands are
narrow regions separating almost solid blocks moving with
different velocities. Recently Fenistein and co-workers ob-
served [3,4] wide shear zones in a modified cylindrical Cou-
ette cell. Instead of letting an inner cylinder rotate with re-
spect to an outer one, their cell has no inner wall, but exerts
the shear deformation via the bottom, which is split into a
rotating inner disk of radius R, and a fixed outer annulus (see
Fig. 1). The shear zone is pinned at the bottom split and
evolves independently of walls. This approach has attracted
considerable interest [5-7] because it provides new insight
into the fundamental problem of shear band formation.

A theory based on the principle of minimum dissipation
rate was proposed soon after the first publications. With the
assumption of negligible width of the shear zone a model
with no fitting parameter resulted which was used to describe
the position of the shear zones [5]. This model proved to be
efficient and even delivered predictions about a new type of
closed shear zones, which were found later both in experi-
ments and in computer simulations [6,7]. However, the
model has to be generalized in order to describe the interest-
ing phenomena related to the width of the shear zone, and
this is the aim of the present paper.

Let us first briefly summarize the experimental findings:
The shear zone starts from the bottom split, and for small
and moderate filling H=<0.7R, it ends up on the surface [3].
If the filling height is further increased, the shear zone is
buried in the material and takes the shape of a cupola [5-7].
The surface position of the shear zone for small filling can be
very well described by a universal empirical curve. The
width of the shear zones on the surface increases as a power
law with the filling height with an exponent ~2/3. For the
shape and width of closed shear zones, however, there are
only qualitative experimental results so far.

Our model combines the ideas of two main sources. The
first one is our former theoretical analysis of shear zones
based on the principle of minimum dissipation [5]. This nar-
row band (NB) model assumes that the shear zone is infi-
nitely thin, separating the standing and moving parts of the
material. The local dissipation rate is proportional to the ve-
locity difference across the shear band and to the hydrostatic
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pressure. In this simple model the position of the shear band
is identified with the shape that corresponds to the global
minimum dissipation rate. By definition, this model was only
able to describe the position of the shear band. Due to the
cylindrical symmetry, the problem was traced back to finding
the minimum path in a smooth two-dimensional (2D) poten-
tial. In spite of its simplicity, the model gave surprisingly
accurate results; moreover, it predicted the transition from
the open [Fig. 1(b)] to the closed [Fig. 1(c)] shapes.
Another optimization problem was introduced earlier in
the context of shear band localization during compactifica-
tion in sheared loose granular matter [8]. In that model in-
stantaneous shear bands were identified by the global mini-
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FIG. 1. (a) The experimental arrangement and calculated shear
bands. The dotted circle is the bottom split; the definition of the
most important quantities are noted in the figure. The gray scaling
on all plots is proportional to the logarithm of the occurrence prob-
ability at the given point. R,=150 for (a)—(c) and H=115, 100, and
150 for plots (a), (b), and (c), respectively.
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mum of a random potential representing the local
inhogeneities of the granular material. These inhogeneities
are not frozen in but change due to the relative displacement
in the shear band. Thus the global minimum may be at a
different place in the next moment, giving rise to an en-
samble of instantaneous shear bands which can be associated
with the visible macroscopic displacement field. These two
models are here combined, and the fluctuations induced by
the random potential are used to address the problem of the
width of the shear bands.

We generalize the NB model in the following way: In-
stead of using a smoothly varying potential like in [5] we use
a random one which is suited better to the disordered nature
of granular media. Like in Ref. [8], the instantaneous dis-
placement is represented by a single localized shear band
determined by optimization on a random field: The shear
band is the path which minimizes the dissipation rate and
obeys the boundary conditions. (We shall again assume that,
due to the symmetry of the problem, the determination of the
band reduces to that of a line.) The shear is known to change
the local structure of the material which we take into account
by changing the randomness in the neighborhood of the ac-
tual shear band. A new optimal shear band is then searched
for. For each random realization of the material the minimi-
zation determines a single narrow band. The shear zone itself
is represented as an ensemble of narrow bands; i.e., the flow
velocity of the material can be obtained as an ensemble av-
erage over the realizations. Our approach is related to the
first-passage percolation problem [9], also known as a poly-
mer in a random medium [10], though in our case the ran-
domness organizes itself dynamically.

The model is defined on a regular square lattice which is
applied as a coarse-grained representation of the material in a
radial cut from the center to the outer wall. The shear band is
represented by a continuous path that starts from the split
point of the bottom and reaches either the surface or the axis
of the sample. We allow nearest- and next-nearest-neighbor
connections with lengths A€ equal to 1 and V2, respectively.
Such a path P stands for a possible sliding surface with
cylindrical symmetry.

The energy dissipation rate associated with path P is in
this geometry proportional to the torque due to the local
friction forces. These are modeled by a random strength pa-
rameter u(r,h) assigned to each site of the lattice, where r
and h are the radial and height coordinates. Each random
variable u is generated uniformly in [ @i, , Upaed, 0<a=<1.
As in Ref. [5] we set u,,,,=r*(H—h), which up to constant
factors is hydrostatic pressure (H—h) times cylindrical cir-
cumference (27r) times lever (r). The torque is then given
by integrating the local shear resistance of the material over
the path P: S=Z,_pu;A€;. The actual instantaneous shear
band is the directed path [11] that can be activated by the
smallest torque—i.e., the one which minimizes S.

Once the minimal path is found, we refresh the strength
parameters u randomly along it and in its vicinity (nearest-
neighbor-sites). By the successive application of this proce-
dure an ensemble of shear bands is collected which provides
the velocity field of the shear flow. One instantaneous shear
band separates the sample into two parts in such a way that
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each site in the inner part rotates by the driving angular ve-
locity () of the bottom disk while the sites in the outer part
have angular velocity zero. Taking an average over the en-
semble of shear bands one arrives at a field of angular ve-
locity that can be compared directly to that observed in ex-
periments.

An important difference between the model of [8] and the
present one is that the randomness is refreshed not only on
the current minimal path but also in its neighborhood. If only
the values in the path were changed, no steady state would
be reached. The average value of the randomness u# would
increase continuously, however extremely slowly. This is not
the case here where the steady state is reached fast as in
experiments. This variant of the model is closely related to
the self-organized criticality model of Bak and Sneppen [12].

The model has three free dimensionless parameters R,/H,
R,/a, and a: in other words, the aspect ratio of the sample,
the split radius in units of the lattice constant, and a number
which controls the effect of disorder in the model. We use
a=1; i.e., all lengths are measured in units of a. The param-
eter & mimics strength fluctuations due to individual proper-
ties (shape, friction, etc.) and cooperative effects (e.g.,
density fluctuations). Smaller @ means stronger disorder,
while a@=1 is a lattice version of the deterministic NB
model [13]. We present data for several different values
«=0,0.43,0.5,0.6 and many different split radii in the range
of R;=15-600. As the lattice unit must be larger than the
lower length cutoff—i.e., the particle diameter—larger val-
ues of R, correspond to smaller grain size.

In Fig. 1 the probability distribution of instantaneous
shear band positions is plotted. We get very similar patterns
as the ones obtained in experiments and molecular dynamics
simulations [6,7] with both open and closed shear zones. We
calculate the angular velocity at any point of the sample and
compare it to the experiments.

If the shear zones are far from the system boundaries, the
error function is a very good fit for the angular velocity in
agreement with the experiments [3]. It gives both the posi-
tion and width of the zones.

Most of the experimental data concern the surface posi-
tion of the shear zones (R,). We compare first this property in
Fig. 2(a). The analytical result of [5] overestimated the ex-
periments for H/R;=0.25. Increasing randomness decreases
the apparent shear zone radius with the best matching at
about a=0.5. System size does not influence the curves for
R,>10.

Fenistein and van Hecke [3] suggested a power law de-
pendence of the surface position on the height: namely,
1-R./R;=(H/R,)*>. Thus in Fig. 2(b) we test it on a log-log
scale. Both the NB model calculation and our numerical data
deviate slightly from the simple power law function for small
H/R,. This deviation is too small to be seen on a normal plot
but could be tested in the experiments if high enough preci-
sion can be attained [14].

In the experiments the width of the shear zones on the
surface was found to be a power law of H with an exponent
of 2/3 [6]. Directed polymers have the same roughening
exponent [10]. As shown in Fig. 3 we obtain an exponent
very close to this value. The curves for different R; (but the
same «) can be scaled together by plotting W/Rf/ 3 versus
H/R, as in the experiments [6].
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FIG. 2. The surface positions of the shear zones in normal scale
(a) and in log-log scale (b). The solid line is from [5]; the dashed
line is the experimental [3] curve. Symbols were obtained for sys-
tems with R;=90 and a=0, 0.43, 0.5, and 0.6 for +, X, O, and [,
respectively.

This power law increase of W with H must stop when the
width of the shear zone reaches R.—i.e., the available dis-
tance between the container axis and the average shear band
position at the surface. For larger H this finite-size effect
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FIG. 3. The surface width of the shear zones. The solid line is
(H/R,)*3. The lower curves are for a=0.43 with R,=90, 150, 300,
and 600 with symbols +, X, *, and [], respectively. The upper
curves are for =0 with R;=150 and 300 with symbols ¢ and A,
respectively. The breakdown of scaling close to the transition is
shown in the inset for a=0.43.
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FIG. 4. The scaled center position [curves (a)] and width [curves
(b)] of the closed shear zones. The solid line is the calculated posi-
tion from [5]. Data points (+, X, O, []) connected with dashed
lines have R,=90, 150, 300, 600 and a=0.43.

implies that W= R« R, (for given H/R,), which explains the
sudden increase of W and the loss of data collapse of the
scaled curves in Fig. 3 at about H/R;=0.7, as observed also
in the experimental results [6]. It cannot be interpreted as a
sign of an increasing characteristic length scale at the transi-
tion from open to closed shear zones.

We find that the width of the shear zone depends strongly
on a which agrees with experiments where the width is in-
fluenced by the shape of the particles. However, the width
can also be tuned by the applied resolution of the lattice.
Therefore it is not obvious whether the parameter « repre-
sents just a rescaling of the lattice constant or is a new,
independent parameter which is needed to describe the rhe-
ology. The simplest scenario would be that a single intrinsic
length [ suffices to characterize the flow and that particle
properties (size, shape, hardness, etc.) enter only through I .
By contrast our model suggests that an additional disorder
parameter has to be included in the description. This second
scenario is favored by Fig. 2 where « shifts the surface po-
sition R. while R, remains unaffected by changing the reso-
lution of the lattice. Although the position shift is small, it
might be important because it cannot be explained by a
single /.. An accurate measurement that is able to confirm or
reject the existence of this small effect can select the physi-
cally relevant scenario.

Due to the occurrence of closed shear zones, the local
angular velocity on the symmetry axis of the container de-
pends on A, being equal to () at the bottom and decreasing
monotoneously towards the surface. By fitting this depen-
dence again by an error function, we determine the position
hy, and vertical width W, of the closed shear zones. This
works as well as on the surface provided the shear zone is
not too close to the boundaries. This fitting procedure has a
much broader range of applicability than the one with half a
Gaussian which works well only for small systems R,=<30
with moderate H=<R, [7].

Some of our measured datasets are plotted in Fig. 4. The
closed shear zones become flatter with increasing H. The
position scales with R, and follows the curve calculated in
[5] for values of H/R, between 0.8 and 2. The deviations for
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larger H/R, can be understood by noting that the height of
the shear zone decreases faster than the width with increas-
ing H. Above a certain filling height the shear zones touch
the bottom of the container. This raises the apparent position
of the shear zones compared to the noiseless system of [5].

The vertical width W, of the closed shear zones scales
with Rf/ 3, as expected for directed polymers with a length of
the order R,. Close to the transition, for H/R, between 0.7
and 0.8, both W, and £,,, deviate from the expected behavior.
Again this can be understood as a boundary effect: In the
absence of fluctuations, /., is closer to the surface than the
width W, permits.

The next question we focus on is the phase transition.
There seems to be a discrepancy between the theoretical
model [5] which predicts a first-order transition and the ex-
periments [6,7] which claim to see a continuous transition.
The latter two experimental papers introduce different
empirical fittings of the shear zone profiles and show the
transition of the fitting parameters. Both papers estimate
that the transition occurs at lower H/Rg (H/Rg=0.6 [7],
H/R¢=0.65 [6]) than in the theory of [5]. The drawback of
both approaches is that only one side of the transition can be
studied.

We prefer the classical approach of the order parameter
of the transition. A good candidate seems to be the
normalized angular velocity of the surface at the center, m
=w(r=0,h=H)/(). If the system has only open shear bands,
m=1, and if only closed ones, m=0. If both types are
present, m can take any value between 0 and 1.

Figure 5 shows the change of m with H/R, for different
R, and a=0. The transition gets sharper as the system size
increases: In the thermodynamic limit R,—, its width
seems to vanish like R;"* (see inset of Fig. 5). Then the
order parameter jumps at a value of H/R,, which we could
estimate from a finite-size scaling analysis as (H/R,).
=().735. Remarkably, this is very close to the higher limit of
the hysteresis calculated in [5].

The angular velocity of the surface at the center is avail-
able in experiments so that the test of the order parameter is
straightforward. The plot of m for three systems can be found
in Ref. [6]. The experimental results look quite similar but
with a little shift in H/R;. The sharpening of the transition
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FIG. 5. (Color online) The order parameter m for a=0. System
size R;=15,35,75,90,150,300,600 from right to left, respectively
(+, X, % [, O, A, +). Experimental data from [6] are shown with
solid symbols of ©, V, and [ for R;=45, 65, and 95 cm, respec-
tively. The inset shows the width of the tranisition versus R, for +
experiments ©. The dashed line has a slope of 0.5.

cannot be tested in these experiments due to the limited
range of R;.

In conclusion we have shown that the results obtained
from numerical simulations of our model can be directly
compared to the experimental ones. Excellent agreement can
be obtained for the already measured quantities such as sur-
face position, width, and angular velocity at the center of the
surface. The comparison with experiments shows that our
lattice constant can be indentified roughly with a one-particle
diameter. This also draws attention to the fact that the experi-
mental systems R;=15-95 are far from the thermodynamic
limit especially if one studies the order of the transition.

The variational principle combined with the self-
organized random potential turned out to be an efficient tool
to study shear zones. Applications to other geometries are
straightforward.
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